Как идет волна от роутера

Слабый сигнал WiFi — актуальная проблема для жителей квартир, загородных домов и работников офисов. Мертвые зоны в сети WiFi свойственны как большим помещениям, так и малогабаритным квартирам, площадь которых теоретически способна покрыть даже бюджетная точка доступа.

Планшет

Радиус действия WiFi роутера — характеристика, которую производители не могут однозначно указать на коробке: на дальность WiFi влияет множество факторов, которые зависят не только от технических спецификаций устройства.

В этом материале представлены 10 практических советов, которые помогут устранить физические причины плохого покрытия и оптимизировать радиус действия WiFi роутера, это легко сделать своими руками.

дальность wifi роутера

Сумка для ноутбука

Содержание

  • Установить антенны в вертикальное положение
  • Разместить роутер ближе к центру помещения
  • Обеспечить прямую видимость между роутером и клиентами
  • Разместить роутер подальше от источников помех
  • Отключить поддержку режимов 802.11 B/G
  • Выбрать оптимальный WiFi канал в настройках
  • Отрегулировать мощность передатчика роутера
  • Заменить штатную антенну на более мощную
  • Использовать повторители сигнала
  • Использовать диапазон 5 ГГц

Установить антенны в вертикальное положение

Излучение точки доступа в пространстве представляет собой не сферу, а тороидальное поле, напоминающее по форме бублик. Чтобы покрытие WiFi в пределах одного этажа было оптимальным, радиоволны должны распространяться в горизонтальной плоскости — параллельно полу. Для этого предусмотрена возможность наклона антенн.

радиус действия антен у роуетера

Антенна — ось «бублика». От ее наклона зависит угол распространения сигнала.

зоны wifi роутера при наклонном положении антен

При наклонном положении антенны относительно горизонта, часть излучения направляется вне помещения: под плоскостью «бублика» образуются мертвые зоны.

зоны wifi роутера при вертикальном положении антен

Вертикально установленная антенна излучает в горизонтальной плоскости: внутри помещения достигается максимальное покрытие.

На практике: Установить антенну вертикально — простейший способ оптимизировать зону покрытия WiFi внутри помещения.

Охлаждающая подставка

Разместить роутер ближе к центру помещения

Очередная причина возникновения мертвых зон — неудачное расположение точки доступа. Антенна излучает радиоволны во всех направлениях. При этом интенсивность излучения максимальна вблизи маршрутизатора и уменьшается с приближением к краю зоны покрытия. Если установить точку доступа в центре дома, то сигнал распределится по комнатам эффективнее.

Диаграмма растрения wifi сингнала когда роутер в конце дома

Роутер, установленный в углу, отдает часть мощности за пределы дома, а дальние комнаты оказываются на краю зоны покрытия.

Диаграмма растрения wifi сингнала когда роутер в центре дома

Установка в центре дома позволяет добиться равномерного распределения сигнала во всех комнатах и минимизировать мертвые зоны.

На практике: Установка точки доступа в “центре” дома далеко не всегда осуществима из-за сложной планировки, отсутствия розеток в нужном месте или необходимости прокладывать кабель.

Акустическая система

Обеспечить прямую видимость между роутером и клиентами

Частота сигнала WiFi — 2,4 ГГц. Это дециметровые радиоволны, которые плохо огибают препятствия и имеют низкую проникающую способность. Поэтому радиус действия и стабильность сигнала напрямую зависят от количества и структуры препятствий между точкой доступа и клиентами.

Как происходит преломление wifi сигнала

Проходя через стену или перекрытие, электромагнитная волна теряет часть энергии.

Величина ослабления сигнала зависит от материала, который преодолевают радиоволны.

Ослабление сигнала бетонная и кирпичная стена

Напольная акустика

Схема подения wifi сигнала

*Эффективное расстояние — это величина, определяющая как изменяется радиус беспроводной сети в сравнении с открытым пространством при прохождении волной препятствия.

Пример расчета: Сигнал WiFi 802.11n распространяется в условиях прямой видимости на 400 метров. После преодоления некапитальной стены между комнатами сила сигнала снижается до величины 400 м * 15% = 60 м. Вторая такая же стена сделает сигнал еще слабее: 60 м * 15% = 9 м. Третья стена делает прием сигнала практически невозможным: 9 м * 15% = 1,35 м.

Такие расчеты помогут вычислить мертвые зоны, которые возникают из-за поглощения радиоволн стенами.

Следующая проблема на пути радиоволн: зеркала и металлические конструкции. В отличие от стен они не ослабляют, а отражают сигнал, рассеивая его в произвольных направлениях.

Держатель для кабелей проводов зарядок 5 разъемов

Мертвые зоны wifi

Зеркала и металлические конструкции отражают и рассеивают сигнал, образуя за собой мертвые зоны.

Расположение без мертвых зон вайфай

Если переместить элементы интерьера, отражающие сигнал, удастся устранить мертвые зоны.

На практике: Крайне редко удается достичь идеальных условий, когда все гаджеты находятся на прямой видимости с роутером. Поэтому в условиях реального жилища над устранением каждой мертвой зоной придется работать отдельно:

  • выяснить что мешает сигналу (поглощение или отражение);
  • продумать куда переместить роутер (или предмет интерьера).

USB-ХАБ

Разместить роутер подальше от источников помех

Диапазон 2,4 ГГц не требует лицензирования и поэтому используется для работы бытовых радиостандартов: WiFi и Bluetooth. Несмотря на малую пропускную способность, Bluetooth все же способен создать помехи маршрутизатору.

Влияние помех на вайфай

Зеленые области — поток от WiFi роутера. Красные точки — данные Bluetooth. Соседство двух радиостандартов в одном диапазоне вызывает помехи, снижающие радиус действия беспроводной сети.

В этом же частотном диапазоне излучает магнетрон микроволновой печи. Интенсивность излучения этого устройства велика настолько, что даже сквозь защитный экран печи излучение магнетрона способно “засветить” радиолуч WiFi роутера.

Универсальная беспроводная зарядка

Влиение СВЧ печи на вайфай

Излучение магнетрона СВЧ-печи вызывает интерференционные помехи почти на всех каналах WiFi.

На практике:

  • При использовании вблизи роутера Bluetooth-аксессуаров, включаем в настройках последних параметр AFH.
  • Микроволновка — мощный источник помех, но она используется не так часто. Поэтому, если нет возможности переместить роутер, то просто во время приготовления завтрака не получится позвонить по скайпу.

USB Hub разветвитель

Отключить поддержку режимов 802.11 B/G

В диапазоне 2,4 ГГц работают WiFi устройства трёх спецификаций: 802.11 b/g/n. N является новейшим стандартом и обеспечивает большую скорость и дальность по сравнению с B и G.

О том, как увеличить скорость wifi соединения, мы рассказали дополнительно.

Диграмма распространения сигнала вайфай в зависимости от частоты герц

Спецификация 802.11n (2,4 ГГц) предусматривает большую дальность, чем устаревшие стандарты B и G.

флешка

Роутеры 802.11n поддерживают предыдущие стандарты WiFi, но механика обратной совместимости такова, что при появлении в зоне действия N-роутера B/G-устройства, — например, старый телефон или маршрутизатор соседа — вся сеть переводится в режим B/G. Физически происходит смена алгоритма модуляции, что приводит к падению скорости и радиуса действия роутера.

На практике: Перевод маршрутизатора в режим “чистого 802.11n” однозначно скажется положительно на качестве покрытия и пропускной способности беспроводной сети.

режим 802.11 N

Однако девайсы B/G при этом не смогут подключиться по WiFi. Если это ноутбук или телевизор, их можно легко соединить с роутером через Ethernet.

ноутбук трансформер

Выбрать оптимальный WiFi канал в настройках

Почти в каждой квартире сегодня есть WiFi роутер, поэтому плотность сетей в городе очень велика. Сигналы соседних точек доступа накладываются друг на друга, отнимая энергию у радиотракта и сильно снижая его эффективность.

Пример помех от других роутеров

Соседние сети, работающие на одной частоте, создают взаимные интерференционные помехи, подобно кругам на воде.

Беспроводные сети работают в пределах диапазона на разных каналах. Таких каналов 13 (в России) и роутер переключается между ними автоматически.

частотные каналы технологии вай фай

Умная колонка Яндекс Станция

Чтобы минимизировать интерференцию, нужно понять на каких каналах работают соседние сети и переключиться на менее загруженный.
Подробная инструкция по настройке канала представлена здесь.

Загруженность WiFi-каналов в подъезде многоэтажки.

Загруженность WiFi-каналов в подъезде многоэтажки.

На практике: Выбор наименее загруженного канала — эффективный способ расширить зону покрытия, актуальный для жильцов многоквартирного дома.

Но в некоторых случаях в эфире присутствует сетей настолько много, что ни один канал не даёт ощутимого прироста скорости и дальности WiFi. Тогда имеет смысл обратиться к способу № 2 и разместить роутер подальше от стен, граничащих с соседними квартирами. Если и это не принесет результата, то стоит задуматься о переходе в диапазон 5 ГГц (способ № 10).

подставка для ноутбука

Отрегулировать мощность передатчика роутера

Мощность передатчика определяет энергетику радиотракта и напрямую влияет на радиус действия точки доступа: чем более мощный луч, тем дальше он бьет. Но этот принцип бесполезен в случае всенаправленных антенн бытовых роутеров: в беспроводной передаче происходит двусторонний обмен данными и не только клиенты должны “услышать” роутер, но и наоборот.

Схема действия роутера на дальние устройства

Асимметрия: роутер “дотягивается” до мобильного устройства в дальней комнате, но не получает от него ответ из-за малой мощности WiFi-модуля смартфона. Соединение не устанавливается.

На практике: Рекомендуемое значение мощности передатчика — 75%. Повышать ее следует только в крайних случаях: выкрученная на 100% мощность не только не улучшает качество сигнала в дальних комнатах, но даже ухудшает стабильность приема вблизи роутера, т. к. его мощный радиопоток “забивает” слабый ответный сигнал от смартфона.

О том, как рассчитать мощность блока питания для компьютера, мы собрали материал дополнительно.

Контроллер скорости для вентиляторов

Заменить штатную антенну на более мощную

Большинство роутеров оснащены штатными антеннами с коэффициентом усиления 2 — 3 dBi. Антенна — пассивный элемент радиосистемы и не способна увеличить мощность потока. Однако повышение коэффициента усиления позволяет перефокусировать радиосигнал за счет изменения диаграммы направленности.

Коэффициент усиления антенны подобен фокусировке луча фонарика: узкий луч светит дальше, чем широкий.

Коэффициент усиления антенны подобен фокусировке луча фонарика: узкий луч светит дальше, чем широкий.

Чем больше коэффициент усиления антенны, тем дальше распространяется радиосигнал. При этом более узкий поток становится похож не на “бублик”, а на плоский диск.

нештатные колонки для ноутбука

Как расходятся волны wifi взависимости от дистанции

На рынке представлен большой выбор антенн для роутеров с универсальным коннектором SMA.

Сменная всенаправленная антенна.

Сменная всенаправленная антенна.

планшет с ручкой

Всенаправленная штыревая антенна.

Всенаправленная штыревая антенна.

Направленная антенна для помещения.

Направленная антенна для помещения.

На практике: Использование антенны с большим усилением — эффективный способ расширить зону покрытия, т. к. одновременно с усилением сигнала увеличивается чувствительность антенны, а значит роутер начинает “слышать” удаленные устройства. Но вследствие сужения радиолуча от антенны, возникают мертвые зоны вблизи пола и потолка.

Наушники с микрофоном, компьютерная гарнитура

Использовать повторители сигнала

В помещениях со сложной планировкой и многоэтажных домах эффективно использование репитеров — устройств, повторяющих сигнал основного маршрутизатора.

Репитеры расширяют WiFi-сеть, охватывая прилегающую территорию и верхние этажи загородного дома.

Репитеры расширяют WiFi-сеть, охватывая прилегающую территорию и верхние этажи загородного дома.

Репитеры помогают развернуть беспроводную сеть в помещениях со сложной планировкой.

Репитеры помогают развернуть беспроводную сеть в помещениях со сложной планировкой.

Чехол для внешнего диска

Простейшее решение — использовать в качестве повторителя старый роутер. Минус такой схемы — вдвое меньшая пропускная способность дочерней сети, т. к. наряду с клиентскими данными WDS-точка доступа агрегирует восходящий поток от вышестоящего маршрутизатора.

Подробная инструкция по настройке моста WDS представлена здесь.

Роутер в режиме WDS помогает расширить покрытие WiFi-сети.

Роутер в режиме WDS помогает расширить покрытие WiFi-сети.

Специализированные повторители лишены проблемы урезания пропускной способности и оснащены дополнительным функционалом. Например, некоторые модели репитеров Asus поддерживают функцию роуминга.

В режиме роуминга устройства автоматически подключаются к более мощной сети, а во время перехода между точками доступа соединение не разрывается.

В режиме роуминга устройства автоматически подключаются к более мощной сети, а во время перехода между точками доступа соединение не разрывается.

На практике: Какой бы сложной ни была планировка — репитеры помогут развернуть WiFi сеть. Но любой повторитель — источник интерференционных помех. При свободном эфире репитеры хорошо справляются со своей задачей, но при высокой плотности соседних сетей использование ретранслирующего оборудования в диапазоне 2,4 ГГц нецелесообразно.

Кресло компьютерное

Использовать диапазон 5 ГГц

Бюджетные WiFi-устройства работают на частоте 2,4 ГГц, поэтому диапазон 5 ГГц относительно свободен и в нем мало помех.

5 ГГц - перспективный диапазон. Работает с гигабитными потоками и обладает повышенной емкостью по сравнению с 2,4 ГГц.

5 ГГц — перспективный диапазон. Работает с гигабитными потоками и обладает повышенной емкостью по сравнению с 2,4 ГГц.

На практике: “Переезд” на новую частоту — радикальный вариант, требующий покупки дорогостоящего двухдиапазонного роутера и накладывающий ограничения на клиентские устройства: в диапазоне 5 ГГц работают только новейшие модели гаджетов.

Проблема с качеством WiFi сигнала не всегда связана с фактическим радиусом действия точки доступа, и ее решение в общих чертах сводится к двум сценариям:

  • В загородном доме чаще всего требуется в условиях свободного эфира покрыть площадь, превышающую эффективный радиус действия роутера.
  • Для городской квартиры дальности роутера обычно достаточно, а основная трудность состоит в устранении мертвых зон и интерференционных помех.

Представленные в этом материале способы помогут выявить причины плохого приема и оптимизировать беспроводную сеть, не прибегая к замене роутера или услугам платных специалистов.

моноблок

Как вам статья?

Нашли опечатку? Выделите текст и нажмите Ctrl + Enter

Время на прочтение
12 мин

Количество просмотров 33K

image

В предыдущей статье о Wi-Fi мы рассказывали об истории беспроводных сетей: первой беспроводной сети AlohaNet, коммерческой WaveLan и IEEE, который поспособствовал стандартизации беспроводных устройств. Вот, кстати, ссылочка на первую публикацию. В этой части цикла про Wi-Fi мы расскажем о сигнале, передающем информацию, а именно: как аналоговые электромагнитные волны передают цифровой сигнал, как модулируется сигнал и что такое мультиплексирование.

Аналоговые и цифровые сигналы

Сигнал — это некий носитель информации, с помощью которого передается информация. Это может быть электромагнитная волна, свет, звук, да и в принципе, практически всё, что угодно может выступать в роли сигнала. Если представить сигнал в виде математической функции от времени, то сигнал окажется либо аналоговым, либо цифровым.

Аналоговый сигнал изменяется во времени постепенно и непрерывно: он не имеет разрывов или пауз. В идеализированном понимании цифровой сигнал противопоставляется аналоговому. Цифровой сигнал на некотором интервале имеет постоянную интенсивность и изменяется моментально.

Аналоговый сигнал для непрерывных данных, например записи голоса

Цифровой сигнал для дискретных данных, например набора битов.

Аналоговый сигнал в виде электромагнитной волны может распространяться через множество сред: оптоволокно, витая пара, по воздуху. В то же время цифровой сигнал можно передавать с помощью проводов через напряжения: постоянная положительная величина будет означать 1, а отрицательная 0.

Свойства сигналов

Скорость и качество передаваемых данных зависит как от особенностей самих сигналов (мощность, способ кодирования), так и от характеристик линии связи (задержка, полоса пропускания, частота ошибок). Рассмотрим основные свойства сигналов.

Синусоида

Процессы могут описываться различными функциями: аналоговыми, дискретными, периодическими и непериодическими. Фундаментальным случаем аналоговой периодической функции является синусоида. Её фундаментальность заключается в том, что она описывает многие природные процессы, например, высоту волны в жидкости и уровень напряжения в электрической цепи.

В общем случае синусоида как функция от времени $y(t)=Asin(2\pi ft +\phi)$ имеет следующие параметры:

Структура синусоиды

Мы рассмотрели синусоиду как функцию от времени в некоторой фиксированной точке пространства. Однако можно использовать представление, когда значения функции изменяются в зависимости от расстояния x. Существует соотношение между двумя синусоидальными сигналами, которое отражает взаимосвязь временной и пространственной периодичности.

У синусоиды $y(x)$ есть параметр — длина волны, который является аналогом периода синусоиды $y(t)$. Длина волны ($\lambda$) — это расстояние, на которое перемещается волна за время периода $T$. Таким образом, скорость распространения волны $v=\lambda / T$. Так как электромагнитные волны распространяются в вакууме со скоростью света, то справедливо соотношение $c=\lambda / T$ или $c=\lambda f$.

Спектральное разложение

Свойства синусоидальных функций делают их эффективным инструментом изучения сигналов. Из теории гармонического анализа Фурье известно, что любой периодический процесс можно представить в виде суммы бесконечного набора синусоидальных колебаний различных частот и различных амплитуд. Такой набор называется спектральным разложением, а синусоидальные колебания определенной частоты — гармониками.

Представление периодического аналогового сигнала суммой синусоид

Все информационные сигналы имеют конечную длительность. Если представить, что сигнал бесконечно повторяется снова и снова, то его можно разложить в ряд Фурье. Таким образом, любой процесс, описываемый произвольной функцией может быть представлен в виде некоторого набора синусоидальных функций. На практике во внимание принимается только несколько первых, значимых гармоник, так как амплитуды последующих быстро убывают и вносят незначительный вклад в форму исходного сигнала. Самая первая частота называется основной гармоникой, а разность между максимальной и минимальной частотами значимых гармоник — шириной спектра сигнала.

Затухания и полоса пропускания

Любая передача информации связана с передачей энергии. Следовательно, понятие мощности сигнала является чрезвычайно важным. Мощность синусоидального сигнала пропорциональна квадрату его амплитуды. Интуитивно понятно, что при прохождении среды передачи мощность сигнала уменьшается. Так вот, затухание показывает, насколько уменьшается мощность эталонного сигнала на выходе линии связи по отношению к мощности сигнала на входе этой линии.

Влияние затухания на форму прямоугольного импульса

Ни один канал связи не может передавать сигналы без потери мощности. Если бы все гармоники ряда Фурье уменьшались при передаче в равной степени, то сигнал уменьшался бы по амплитуде, но не искажался. К сожалению, все каналы связи уменьшают гармоники в разной степени, тем самым искажая передаваемый сигнал. Степень затухания мощности синусоидального сигнала зависит от частоты и эта зависимость характеризует линию связи.

Полоса пропускания — это непрерывный диапазон частот, для которого затухание не превышает некоторый заранее заданный предел. То есть полоса пропускания определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии без значительных искажений.

Помехи

Существует множество факторов, способных исказить или повредить сигнал. Наиболее распространенные из них — помехи или шумы, представляющие собой любой нежелательный сигнал, который смешивается с сигналом, предназначенным для передачи или приема, и искажает его.

Искажение импульсов в линии связи

Пропускная способность

Пропускная способность — величина, характеризующая максимальную скорость передачи данных, которая может быть достигнута на этой линии. Особенностью пропускной способности является то, что она зависит как от характеристик физической среды (затухания и полосы пропускания), так и от способа передачи данных (кодирования). Дело в том, что кодирование определяет спектр передаваемых сигналов. Если значимые гармоники сигнала попадают в полосу пропускания линии, то такой сигнал будет хорошо передаваться. Если же значимые гармоники выходят за границы полосы пропускания, то сигнал будет значительно искажаться, что усложнит распознавание информации.

Соответствие между полосой пропускания и спектром сигнала

В большинстве способов кодирования используется изменение одного или нескольких параметров периодического электрического сигнала — частоты, амплитуды и фазы синусоиды или же уровня напряжения/тока последовательности импульсов. Эти параметры называют информационными параметрами сигнала. Периодический сигнал, параметры которого подвергаются изменениям, называют несущим сигналом. Процесс изменения информационных параметров несущего сигнала в соответствии с передаваемой информацией называется модуляцией (кодированием). Измененный в результате кодирования несущий сигнал называют информационным сигналом. Изменение информационного параметра сигнала происходит через фиксированный интервал времени, называемый тактом. Величина, обратная значению такта, является тактовой частотой линии.

Резюме

Итак, попробуем теперь собрать все вышеизложенное вместе. В общем случае любой цифровой сигнал имеет бесконечную ширину полосы. Если мы попытаемся передать этот сигнал через какую-то среду, передающая система наложит ограничения на ширину полосы, которую можно передать. Чем больше передаваемая полоса, тем больше стоимость передачи. Поэтому цифровую информацию аппроксимируют сигналами с ограниченной шириной полосы. С другой стороны, при ограничении ширины полосы возникают искажения, затрудняющие интерпретацию принимаемого сигнала. Чем больше ограничена полоса, тем больше искажение сигнала и тем больше потенциальная возможность возникновения ошибок при приеме.

Естественно, нам хотелось бы максимально эффективно использовать имеющуюся полосу. Для цифровых данных это означает, что для определенной полосы желательно получить максимально возможную скорость передачи, учитывая помехи и ошибки. В этом помогают различные техники модуляции.

Модуляция сигнала

В системах связи используют как цифровые, так и аналоговые сигналы. Но в рамках беспроводной связи между компьютерами, где в качестве сигнала используется электромагнитная волна, а данные — дискретные, возникает необходимость в модуляции — преобразовании двоичных данных в аналоговый сигнал.

Сама по себе модуляция двоичных данных не ограничивается беспроводной связью. Показательный пример — это передача двоичных данных по телефонным кабелям или каналам тональной частоты. Они имеют полосу пропускания 3.1 КГц и передают частоты в диапазоне от 300 Гц до 3400 Гц. Это меньше, чем воспринимаемый человеком диапазон звуков — от 20 Гц до 20 КГц, но достаточный для передачи большинства звуков. Для передачи цифрового сигнала такой полосы пропускания недостаточно (с приемлемой, на момент применения в качестве канала связи телефонной инфраструктуры, скоростью), поэтому использовалась аналоговая модуляция: данные поступали от компьютера в модем и он модулировал аналоговый сигнал.

В качестве кодирующего параметра можно использовать три характеристики электромагнитной волны: амплитуду, частоту и фазу. Рассмотрим каждый из них.

Амплитудная модуляция

При амплитудной модуляции для кодировки разных логических значений используются сигналы несущей частоты с разной амплитудой. В простейшем случае при кодировании 2 значений (логической единицы и логического нуля) используют сигнал с двумя возможными амплитудами: А1 для единицы и А2 для нуля.

Амплитудная модуляция в подвержена помехам и в основном используется в сочетании с другими видами модуляции.

Частотная модуляция

Для частотной модуляции используются несколько сигналов разной частоты, расположенные вблизи к несущей частоте. Одним из вариантов частотной модуляции является бинарная. В ней логический нуль и логическая единица кодируется двумя сигналами с частотами f1 и f2, смещенные относительно несущей частоты на одинаковое расстояние:

Также частотную модуляцию можно осуществлять с помощью нескольких сигналов. Такая схема называется многочастотной модуляцией. Такой вид модуляции в большей степени подвержен ошибкам, чем бинарная, но позволяет закодировать большее количество информации. В ней каждая сигнальная посылка кодирует несколько битов информации. Вот пример четырехуровневой частотной модуляции:
image

Фазовая модуляция

В фазовой модуляции используются сигналы одинаковой частоты, но со смещением по фазе. Наиболее простым вариантом фазовой модуляции является двухуровневая модуляция. В ней используется два сигнала, смещенные по фазе (один — 0, другой 180). Один из них кодирует логическую единицу, а другой логический нуль.

Другой вариант фазовой модуляции — дифференциальная. Суть метода заключается в сравнении фазы не с эталоном, а с предыдущим пакетным символом. Если следующий символ логический нуль, то фаза не меняется. Если единица — меняется на противоположную:

Также, как и в случае с предыдущими модуляциями, метод можно расширить: использовать не два варианта фаз, а больше.

Квадратурная амплитудная модуляция (QAM)

Для повышения производительности канала связи прибегают к комбинаторным методам модуляции. Один из популярных вариантов, который используется в Wi-FI — это квадратурная амплитудная модуляция (QAM). В ней используется фазовая и амплитудная модуляции.

В квадратурной амплитудной модуляции используется несколько сигналов на одной частоте с разной фазой. В простейшем случае получается 4 возможных состояния: 2 по частоте и 2 по амплитуде. Метод можно расширять, но вероятность ошибки увеличивается. Для их избежания используется следующая схема: запрещено использовать одинаковую амплитуду соседним по фазе сигналам. Например, при использовании 4 амплитуд и 8 фаз будет доступно 16 состояний (0000, 0001, …., 1111).

Физический уровень стандарта IEEE 802.11

Физический уровень стандарта IEEE 802.11 состоит из двух подуровней. PLCP — этот уровень управляет обменом кадров между MAC-подуровнем и физическим уровнем. PMD — подуровень зависимости от физической среды. Этот подуровень обеспечивает интерфейс со средой передачи данных. Он определяет характеристики беспроводной среды и метод передачи данных беспроводными станциями через нее.

Спецификации семейства 802.11 имеют различные характеристики: скорость передачи, диапазон частот, ширину канала и т.д. Ниже приведены технические характеристики спецификаций физического уровня:

Частотные диапазоны

Порядок и правила использования радиочастотного спектра определяется государством. В России роль регулятора выполняет Государственная комиссия по радиочастотам (ГКРЧ). В США за регулирование отвечает FCC, в Европе — ERO и ETSI. Правила использования радиочастотного спектра необходимы для того, чтобы множество беспроводных устройств могло одновременно использовать одну полосу частот, не создавая помех друг другу.

В России для беспроводных сетей стандарта 802.11 выделены одна полоса в диапазоне 2,4 ГГц (2400-2483,5 МГц) и две полосы в диапазоне 5 ГГц (5150-5350 МГц и 5650-6425 МГц). Частотные диапазоны 2,4 и 5 ГГц, в свою очередь, разбиваются на каналы, ширина и количество которых зависит от спецификации 802.11 и особенностей радиочастотного регулирования в конкретном государстве.

Расширение спектра

Технологии модуляции определяют, каким образом и на какой скорости данные передаются через беспроводную среду. Рассмотрим две основных приема — расширение спектра и мультиплексирование.

Технологии расширения спектра являются базовыми при организации передачи данных в беспроводных сетях стандарта 802.11. Изначально их использовали для разведывательных и военных целей. Основная идея метода состоит в том, чтобы распределить информационный сигнал по широкой полосе радиодиапазона, что в итоге позволит значительно усложнить подавление или перехват сигнала. При этом преобразовании мощность исходного сигнала не изменяется, а распределяется по более широкой полосе пропускания и становится сопоставима с мощностью шумов. Это позволяет сделать сигнал невосприимчивым к различным типам шумов и искажениям, дает возможность скрывать и шифровать сигналы и одновременно использовать одну полосу частот несколькими пользователями.

Первая разработанная схема расширенного спектра известна как метод перестройки частот (FHSS). Её суть заключается в постоянной смене несущей в пределах широкого диапазона частот. В результате мощность сигнала распределяется по всему диапазону, и прослушивание какой-то определенной частоты дает только небольшой шум. Последовательность несущих выбирается псевдослучайно. На каждой несущей частоте для передачи дискретной информации применяются стандартные методы модуляции (например, частотная или фазовая).

Перестройка частоты

Физический уровень FHSS стандарта 802.11 позволяет выполнять передачу данных на скоростях 1 и 2 Мбит/с. В более новых спецификациях (802.11b и 802.11g) используется более совершенный метод прямой последовательности (DSSS), более приспособленный для передачи данных на высоких скоростях. В DSSS также используется весь частотный диапазон, выделенный для одной беспроводной линии связи. В отличие от FSSS весь частотный диапазон занимается не за счет постоянных переключений с частоты на частоту, а за счет того, что каждый бит информации заменяется N битами, так что тактовая скорость передачи сигналов увеличивается в N раз. А это, в свою очередь, означает, что спектр сигнала также расширяется в N раз. Достаточно соответствующим образом выбрать скорость передачи данных и значение N, чтобы спектр сигнала заполнил весь диапазон. Как и в случае FHSS, для кодирования результирующего кода может использоваться любой вид модуляции.

Каналы, используемые в технологии DSSS

Мультиплексирование

Одна из основных проблем построения беспроводных систем — это решение задачи доступа многих пользователей к ограниченному ресурсу среды передачи. Существует несколько базовых методов доступа (мультиплексирования), основанных на разделении между станциями таких параметром, как пространство, время, частота и код. Задача мультиплексирования — выделить каждому каналу пространства, время, частоту и/или код с минимумом взаимных помех и максимальных использованием характеристик передающей среды.

В новых стандартах 802.11 используется механизм мультиплексирования посредством ортогональных несущих частот (OFDM). Его суть заключается в том, что весь доступный частотный диапазон разбивается на достаточно много поднесущих (от нескольких сот до тысяч). Одному каналу связи (приемнику и передатчику) назначают для передачи несколько таких несущих, выбранных из всего множества по определенному закону. Передача ведется одновременно по всем поднесущим, т. е. в каждом передатчике исходящий поток данных разбивается на N субпотоков, где N – число поднесущих, назначенных данному передатчику. Распределение поднесущих в ходе работы может динамически изменяться. Схема OFDM имеет несколько преимуществ: она помогает подавлять межсимвольную интерференцию и бороться с селективным замиранием.

Защита от ошибок

Как говорилось ранее, при передаче данных, особенно по беспроводной среде, непременно будут возникать ошибки. Существуют три наиболее распространенных орудия борьбы с ними:

  • Коды обнаружения ошибок. Основан на передаче в составе блока данных избыточной служебной информации (контрольная сумма, FCS), по которой можно судить с некоторой степенью вероятности о достоверности принятых данных.
  • Коды с коррекцией ошибок. Позволяет приемнику не только понять, что присланные данные содержат ошибки, но и исправить их. Коды, которые обеспечивают прямую коррекцию ошибок, требуют введения большей избыточности в передаваемые данные, чем коды, которые только обнаруживают ошибки.
  • Протоколы с автоматическим запросом повторной передачи. В простейшем случае защита от ошибок заключается только в их обнаружении. Система должна предупредить передатчик об обнаружении ошибки и необходимости повторной передачи.

Антенны MIMO

Пусть антенна — это проводник, который может излучать и улавливать в/из окружающей среды электромагнитные волны. В 2008 году в новый стандарт Wi-Fi 802.11n вошла новая технология MIMO — multiple-in multiple out. Суть MIMO заключается в использовании нескольких антенн на передатчике и приемнике, передающих сигнал в отдельных пространственных потоках (например с использованием поляризации). При этом передающие и принимающие антенны разносятся таким образом, чтобы их сигналы слабо воздействовали друг на друга. MIMO помогает увеличить пропускную способность канала, либо улучшить качество передачи за счет избыточных антенн.

Различные конфигурации систем с разным числом антенн

В наше время беспроводной доступ к интернету стал неотъемлемой частью нашей жизни. Но как известно, передача данных по wifi осуществляется за счет волны электромагнитного излучения, которая распространяется от антенны роутера. Чтобы понять, как это происходит, необходимо разобраться в основных принципах распространения волн.

Волны wifi являются радиоволнами, которые принадлежат к спектру электромагнитных волн. Они имеют определенную длину и частоту и могут передавать информацию в виде сигнала. Когда мы подключаемся к беспроводной сети, антенна роутера начинает испускать радиоволны, которые распространяются по воздуху и воспринимаются устройствами, подключенными к сети.

Распространение волн wifi осуществляется по прямолинейным линиям. Однако, в процессе взаимодействия с преградами (стенами, мебелью и др.), волны испытывают рассеяние и отражение. Это означает, что часть волн может отразиться от преград и создать эхо, а часть может пройти сквозь них, но с потерей силы сигнала. В результате, мощность и качество сигнала wifi могут сильно варьироваться в разных частях помещения или в зависимости от расстояния от роутера.

Содержание

  1. Как распространяются волны Wi-Fi от антенны роутера: основные принципы
  2. Основные механизмы передачи данных
  3. Принципы работы распространения волн wifi
  4. Роль антенны роутера в передаче сигнала
  5. Влияние преград на качество сигнала
  6. Оптимизация распространения wifi сигнала

Как распространяются волны Wi-Fi от антенны роутера: основные принципы

Волны Wi-Fi представляют собой электромагнитные волны, которые могут двигаться во всех направлениях от антенны роутера. Однако, сигналы Wi-Fi имеют ограниченную дальность и могут встречать препятствия на своем пути.

Распространение сигнала Wi-Fi зависит от нескольких факторов:

  1. Частотный диапазон: Wi-Fi работает на разных частотах, таких как 2,4 ГГц или 5 ГГц. Частотный диапазон влияет на скорость передачи данных и проникновение сигнала через препятствия.
  2. Мощность сигнала: Мощность сигнала определяет дальность его распространения. Чем выше мощность, тем дальше может дойти сигнал, однако это может также привести к ухудшению качества сигнала.
  3. Препятствия: Стены, мебель и другие объекты могут ослаблять сигнал Wi-Fi или блокировать его полностью. Препятствия могут влиять на дальность и стабильность сигнала.
  4. Направленность антенны: Некоторые роутеры имеют направленные антенны, которые позволяют точечно направлять сигнал в определенном направлении. Это может быть полезным, если требуется усилить сигнал в определенной области.

Расположение роутера также влияет на распространение сигнала Wi-Fi. Чем ближе устройства к роутеру, тем сильнее будет сигнал. Однако сигнал может ослабевать, если вы находитесь далеко от роутера или находитесь за препятствиями.

Важно также учитывать, что сигнал Wi-Fi может быть подвержен помехам от других устройств, работающих на подобных частотах, например, микроволновых печей или беспроводных телефонов. Это может вызывать снижение качества сигнала или его потерю.

Понимание основных принципов распространения сигнала Wi-Fi от антенны роутера поможет вам оптимизировать работу вашей беспроводной сети. Размести роутер в центре помещения, уберите препятствия, контролируйте мощность и используйте направленные антенны при необходимости. Это поможет обеспечить наилучшее качество и дальность сигнала Wi-Fi.

Основные механизмы передачи данных

Передача данных в сети Wi-Fi осуществляется посредством использования электромагнитных волн. Роутер генерирует эти волны, которые затем распространяются через воздух вокруг него.

Основной механизм передачи данных в Wi-Fi основан на использовании метода множественного доступа с переключением частоты (CSMA/CA). Когда устройство хочет отправить данные через Wi-Fi, оно должно сначала проверить, свободен ли канал. Если канал занят, оно должно подождать своей очереди. Если канал свободен, оно может начать передачу данных.

Данные передаются в виде пакетов, которые содержат информацию, необходимую для правильного принятия и интерпретации данных получателем. Пакеты содержат адреса отправителя и получателя, контрольные суммы для проверки целостности данных и другую информацию.

При передаче данных через волны Wi-Fi, сигнал может встретить препятствия, такие как стены, мебель или другие электронные устройства. Эти препятствия могут ослабить сигнал или вызвать его отражение, что может привести к ухудшению качества соединения. Роутеры и устройства Wi-Fi обычно оснащены несколькими антеннами, чтобы улучшить область покрытия и снизить влияние препятствий.

Кроме того, Wi-Fi использует различные стандарты, такие как 802.11b, 802.11g, 802.11n и 802.11ac, которые определяют различные техники и частоты для улучшения скорости и качества передачи данных.

В целом, основные механизмы передачи данных в Wi-Fi основаны на использовании электромагнитных волн, методе множественного доступа с переключением частоты и передаче данных в виде пакетов. Эти механизмы позволяют эффективно передавать данные по воздуху и обеспечивать надежное соединение между устройствами в сети Wi-Fi.

Волны Wi-Fi распространяются в пространстве путем создания электромагнитного поля. Они могут проходить через препятствия, такие как стены и мебель, но при этом могут испытывать потерю силы сигнала из-за воздействия на пути распространения.

Волны Wi-Fi имеют ограниченный радиус действия, их сила сигнала уменьшается с удалением от роутера. Влияние препятствий на распространение волн Wi-Fi также может вызывать снижение качества сигнала.

Устройства, такие как лэптопы, смартфоны и планшеты, которые находятся в зоне покрытия Wi-Fi, могут подключаться к роутеру и использовать сеть для передачи данных. Когда устройство принимает сигнал Wi-Fi, оно декодирует данные и использует их для доступа в Интернет или для обмена информацией с другими устройствами в сети.

Роль антенны роутера в передаче сигнала

Антенны бывают разных типов, включая:

Тип антенны Описание
Омни-дирекциональная Излучает сигнал равномерно во всех направлениях, обеспечивая широкий охват и связь со многими устройствами одновременно.
Направленная Излучает сигнал в узком направлении, обеспечивая дальность при передаче сигнала на большие расстояния.
Секторная Излучает сигнал в виде сектора, обеспечивая охват в определенном направлении.

Выбор типа антенны зависит от конкретных условий использования и требований пользователя. Применение разных типов антенн позволяет оптимизировать зону покрытия Wi-Fi сети и обеспечить наилучшую производительность.

Влияние преград на качество сигнала

Волны Wi-Fi имеют свойство проникать через различные преграды, однако некоторые материалы и объекты могут существенно ослабить или заблокировать их распространение.

Некоторые из преград, которые могут повлиять на качество сигнала Wi-Fi:

  • Стены и перегородки. Волны Wi-Fi могут проникать через стены, однако каждый слой материала может ослабить сигнал. Железобетон, стекло и металлические конструкции являются наиболее сильными преградами для Wi-Fi сигнала.
  • Мебель и другие предметы. Крупные предметы мебели, такие как шкафы или книжные полки, могут также ослабить сигнал Wi-Fi. Они могут действовать как преграда, разрывая путь сигнала.
  • Вода. Волны Wi-Fi могут проникать через воду, однако вода в высокой концентрации, например, в аквариуме или на растениях, может существенно ослабить сигнал.
  • Электромагнитные поля. Другие электронные устройства, такие как микроволновые печи или радио, могут создавать электромагнитные поля, которые могут помехи сигналу Wi-Fi.

При размещении роутера следует учитывать эти потенциальные преграды и стараться избегать их. Также возможно использование усилителей сигнала или расширителей диапазона для улучшения связи Wi-Fi через преграды.

Оптимизация распространения wifi сигнала

Для максимальной эффективности и стабильности безопасной связи через wifi, необходимо правильно оптимизировать распространение сигнала. В данном разделе мы рассмотрим некоторые основные принципы оптимизации wifi сети.

1. Расположение роутера:

  • Роутер следует располагать в центре помещения, чтобы wifi сигнал равномерно покрывал всю область.
  • Избегайте размещения роутера вблизи других электронных устройств, подключенных к сети, таких как микроволновая печь, телефон или радиоаппаратура, так как они могут помешать распространению сигнала.
  • Поместите роутер на высоте, чтобы избежать препятствий для сигнала, например, стен или мебели.

2. Избегайте интерференции:

  • Выключите или переместите все другие электронные устройства, которые работают на частотах близких к wifi (например, беспроводные телефоны).
  • Поместите антенны роутера вертикально и распределите их равномерно, чтобы сигнал был направлен в нужное направление.
  • Измените настройки роутера, чтобы использовать менее загруженные частотные каналы.

3. Улучшение сигнала:

  • Установите усилитель сигнала (репитер) для усиления wifi сигнала и расширения его покрытия.
  • Установите антенну повышенной мощности для увеличения дальности проникновения сигнала.
  • Проверьте обновления прошивки для роутера, так как они могут содержать улучшения в работе wifi.

4. Защита сигнала:

  • Настройте пароль и шифрование на своей wifi сети, чтобы предотвратить несанкционированный доступ.
  • Измените стандартное имя и пароль для входа в настройки роутера, чтобы улучшить безопасность.

Соблюдение данных принципов поможет оптимизировать распространение wifi сигнала и обеспечить стабильную и безопасную связь в вашей сети.

В настоящее время Wi-Fi стал неотъемлемой частью нашей жизни. От домашних сетей до общественных мест, мы все чаще используем беспроводной интернет для связи и доступа к информации. Но как именно работают волны Wi-Fi и каким образом они распространяются?

Wi-Fi — это технология передачи данных через радиоволны. Роутер выполняет роль передатчика, который отправляет сигналы в виде радиоволн через антенну. Эти радиоволны имеют определенные частоты и диапазоны, которые позволяют передавать данные на определенные расстояния.

Основной принцип работы волн Wi-Fi — это использование метода модуляции, который позволяет сигналу изменяться в зависимости от передаваемых данных. Сигнал передается в виде серии импульсов, где каждый импульс представляет определенные данные. Роутер отправляет эти импульсы через антенну, которые затем принимаются устройствами, подключенными к сети Wi-Fi.

Важно отметить, что волны Wi-Fi имеют ограниченную дальность передачи. Они могут сталкиваться с преградами, такими как стены, мебель и другие объекты, что может снизить их скорость и качество передачи сигнала. Кроме того, эти волны также могут подвергаться воздействию других устройств, работающих на тех же частотах, что может вызывать интерференцию и снижение производительности сети.

Тем не менее, благодаря непрерывной разработке технологий Wi-Fi становится все более надежным и удобным средством передачи данных. Усовершенствованная антенная система и поддержка различных частотных диапазонов позволяют улучшить качество и область покрытия Wi-Fi сетей. Таким образом, мы можем наслаждаться высокоскоростным беспроводным интернетом даже в самых отдаленных уголках дома или на общественных местах.

Содержание

  1. Принципы работы вай-фай роутера и передачи сигнала
  2. Как распространяются волны вай-фай
  3. Особенности вай-фай сигнала
  4. Влияние препятствий на передачу сигнала
  5. Мощность и дальность вай-фай сигнала

Принципы работы вай-фай роутера и передачи сигнала

Работа вай-фай роутера основана на принципе передачи данных по радиочастотному диапазону. Роутер преобразует информацию, полученную от провайдера интернет-соединения, и отправляет ее в виде радиоволн. Устройства, которые хотят получить доступ к интернету, подключаются к роутеру через беспроводной интерфейс, и данные передаются и принимаются посредством радиоволн.

Вай-фай роутеры работают в определенном диапазоне частот, который является частью спектра электромагнитных волн. Обычно роутеры работают в диапазоне 2,4 ГГц или 5 ГГц. Эти частоты являются лицензированными и регулируются государственными органами.

Частота Скорость передачи данных
2,4 ГГц обычно до 300 Мбит/с
5 ГГц обычно до 1300 Мбит/с или выше

Сигнал вай-фай роутера передается в так называемых «каналах». Каждый канал имеет определенную ширину полосы пропускания и может использоваться для передачи данных. При настройке роутера можно выбрать канал, который будет использоваться для передачи сигнала. Часто в роутерах используется автоматический выбор канала, который позволяет роутеру выбрать наиболее свободный и малошумящий канал для передачи данных.

Однако, следует учитывать, что сигнал вай-фай роутера ограничен своим диапазоном действия. Стены, мебель и другие препятствия могут ослаблять сигнал и ухудшать его качество. Кроме того, близость других радиоустройств, таких как микроволновая печь или беспроводные телефоны, также может приводить к помехам в работе вай-фай роутера.

Чтобы получить более стабильный и качественный сигнал вай-фай роутера, рекомендуется размещать его в центре помещения и избегать препятствий между роутером и устройствами, которые подключены к нему. Также можно использовать репитеры или мосты, которые помогут расширить зону действия сигнала и улучшить его качество.

Как распространяются волны вай-фай

Wi-Fi использует частоты в диапазоне 2,4 ГГц и 5 ГГц. Сигналы Wi-Fi имеют длину волны, соответствующую частоте передачи данных. Чем выше частота, тем меньше длина волны. На практике это означает, что сигналы Wi-Fi частотой 2,4 ГГц проникают через стены, мебель и другие преграды лучше, но имеют более низкую скорость передачи данных, в то время как сигналы Wi-Fi частотой 5 ГГц имеют более высокую скорость передачи данных, но плохо проникают через преграды.

Волны вай-фай могут распространяться в пространстве как в направлении, так и без направления. Часто роутеры имеют несколько антенн для повышения производительности и дальности сигнала. Антенны создают электромагнитное поле, которое и рассеивается вокруг роутера и обеспечивает покрытие сигналом большой площади. Физические преграды, такие как стены и перегородки, ослабляют сигнал, поэтому площадь покрытия может быть ограничена.

При пользовании Wi-Fi устройством, оно может находиться в «зоне покрытия» роутера, когда сигнал достаточно сильный, или в «зоне отсутствия покрытия», когда сигнал ослаблен или недоступен. Расстояние, на котором сигнал Wi-Fi может быть принят, зависит от мощности и антенн роутера, а также от наличия преград.

Важно помнить, что сигнал Wi-Fi может подвергаться помехам от других электронных устройств, радиочастотных источников, а также от металлических и водных преград. Кроме того, сигнал Wi-Fi может быть подвержен перегруженности в случае большого количества подключенных устройств или недостаточной пропускной способности интернет-канала.

Особенности вай-фай сигнала

Вай-фай сигнал, или беспроводной сигнал, используется для передачи данных между устройствами через радиоволны. Работа вай-фай роутера основана на принципе передачи и приема этих радиоволн.

Одной из особенностей вай-фай сигнала является проникновение через преграды. В отличие от проводных соединений, вай-фай сигнал способен преодолевать стены и другие объекты, что позволяет получать доступ к интернету из разных комнат и даже с другого этажа.

Еще одной особенностью вай-фай сигнала является его распространение в виде конуса. Радиоволны, излучаемые роутером, распространяются во всех направлениях, создавая конусообразную зону покрытия. Чем ближе устройство к роутеру, тем сильнее и стабильнее будет сигнал.

Для обеспечения максимальной скорости и стабильности сигнала вай-фай роутеры используют различные технологии, такие как антенны с повышенной усиленностью, множественные потоки данных и технологию множественного доступа с частотным разделением (MU-MIMO).

Также вай-фай сигнал может подвергаться влиянию внешних помех, таких как другие беспроводные устройства, металлические предметы или электромагнитные волны. Поэтому важно размещать роутер в месте, где он будет находиться под минимальным влиянием помех, а также использовать каналы, которые не пересекаются с каналами других устройств.

В заключение, вай-фай сигнал имеет свои особенности, которые важно учитывать при настройке и использовании беспроводной сети. Понимание этих особенностей позволяет оптимизировать работу сети, обеспечить стабильное подключение и получать высокую скорость передачи данных.

Влияние препятствий на передачу сигнала

Волны Wi-Fi-сигнала передаются в окружающем пространстве и могут столкнуться с различными препятствиями, которые влияют на качество и дальность передачи. Эти препятствия могут быть физическими объектами, такими как стены, потолки, мебель или даже люди, а также электромагнитными помехами от других электронных устройств.

Физические препятствия, такие как стены и потолки, могут ослаблять и отражать волны Wi-Fi. Чем плотнее и толще препятствие, тем больше сигнал будет ослаблен. Например, бетонные стены могут значительно уменьшить дальность передачи сигнала Wi-Fi, особенно на высоких частотах, которые чувствительны к поглощению и отражению.

Еще одним фактором, влияющим на передачу сигнала, являются электромагнитные помехи от других устройств. Микроволновые печи, беспроводные телефоны и другие электронные устройства могут работать на той же частоте, что и Wi-Fi, и создавать помехи, ухудшая качество сигнала и уменьшая его дальность.

Для более эффективной передачи сигнала Wi-Fi рекомендуется размещать роутер в центре помещения и избегать препятствий между роутером и устройствами, которые нуждаются в сигнале. Также помогает выбор наилучшей частоты Wi-Fi и использование репитеров или усилителей сигнала для увеличения его дальности.

Мощность и дальность вай-фай сигнала

Мощность вай-фай сигнала измеряется в милливаттах (mW) или децибелах (дБм). Чем выше мощность, тем сильнее сигнал и тем дальше он может распространяться. Однако, не стоит забывать, что большая мощность сигнала может приводить к интерференции или нарушению работы других устройств.

Дальность вай-фай сигнала зависит от многих факторов, включая препятствия на пути сигнала, такие как стены и перегородки, а также влияние окружающих устройств и других беспроводных сетей. Кроме того, дальность также зависит от мощности передатчика и чувствительности приемника.

Чтобы увеличить дальность вай-фай сигнала и улучшить его качество, можно использовать различные методы. Например, можно установить роутер на таком месте, чтобы сигнал проходил через как можно меньше препятствий. Также можно усилить сигнал с помощью усилителя или использовать усовершенствованные антенны. Однако, следует помнить, что усиление сигнала также может привести к увеличению интерференции и нарушению работы других устройств.

Необходимо также учитывать, что дальность вай-фай сигнала может быть ограничена законами и нормативными актами, регулирующими использование радиочастотного спектра. В разных странах могут быть различные ограничения на диапазоны частот и мощность передатчиков. Поэтому при настройке роутера следует учитывать местные правила и рекомендации.

Вывод: Мощность и дальность вай-фай сигнала являются важными характеристиками, влияющими на качество и стабильность беспроводного соединения. Необходимо учитывать все факторы, которые могут оказывать влияние на дальность сигнала, и принимать соответствующие меры для улучшения его качества.

Привет, дорогой друг! Сегодня мы рассмотрим вопрос – на какое расстояние действует WiFi роутер. На самом деле точного ответа вам не даст никто, но я постараюсь раскрыть эту проблему как можно шире. На сегодняшний момент почти все роутеры в РФ имеют максимальную мощность в 100 мВт. На дешевых роутерах при установке 2 всенаправленных антенн, аппарат будет бить примерно на 80-100 метров. И тут сразу же многие скажут – что это просто «брехня».

На самом деле так и есть, но бить на такое большое расстояние сможет только маршрутизатор, который стоит в чистом поле, а вокруг нет ни одной живой души. То есть радиоволна бьет максимально далеко. В наших реалиях, вокруг нас обычно очень много стен, людей, домов, который сильно глушат сигнал. Также радиосигнал может отражаться и мешать самому себе. Или соседские роутеры ухудшают связь, проникая своими коварными волнами внутрь квартиры.

ПОМОЩЬ! Если в процессе статьи или после прочтения у вас, дорогие читатели, возникнут вопросы – то смело без отлагательств пишем их в комментариях.

Дальность действия WI-Fi роутера: максимальное расстояние

Содержание

  1. Стандарты, протоколы и частоты
  2. Параметры волны
  3. Увеличить или уменьшить радиус действия WiFi
  4. Задать вопрос автору статьи

Стандарты, протоколы и частоты

Давайте коротко расскажу, про стандарты и частоты. На данный момент в вай-фай используются две частоты передачи данных: 2.4 и 5 ГГц. И они также влияют на дальность действия. 5 ГГц — это частота, которая пришла к нам недавно. Имеет большую скорость передачи данных, но вот затухает быстрее. Вот 2.4 ГГц на данный момент самая распространенная частота.

Дальность действия WI-Fi роутера: максимальное расстояние

А теперь давайте, отталкиваясь от частот, кратко посмотрим на самые популярные стандарты.

2.4 ГГц:

  • 802.11а – передача информации внутри сети до 8 Мбит в секунду. Старый стандарт, но пока ещё используется.
  • 802.11b – тоже старенький стандарт, но на нем пока ещё работают некоторые ноутбуки. Скорость выше 20 Мбит в секунду.
  • 802.11g – 50 Мбит в секунду.
  • 802.11n – 150 Мбит в секунду. Может также работать и с 5 ГГц частотой.

5 ГГц:

  • 802.11ac – Свыше 1 Гбит в секунду.

Как я уже и говорил, пока самым распространенным стандартом является 802.11n, и он используется почти везде. Скорость достаточно высокая и бьет далеко в отличии от того же 802.11ac. Более подробно вы можете почитать про стандарты в этой статье.

Параметры волны

Помимо частоты, мы уже говорили про затухание от препятствий. При чем препятствием будет почти все. Например, если на улице идёт дождь, то мобильная связь, которая использует примерно те же частоты – будет хуже. Также и с вай-фай. У волны есть и параметр естественного затухания. Металлические конструкции, зеркала, а также толстый бетон – почти полностью глушат слабый сигнал.

Радиус действия также будет зависеть от коэффициента усиления антенны. И чем он больше, тем дальше бьет радиоволна. Но тут есть и обратная сторона монеты. Дело в том, что с увеличением параметра усиления пучок волн становится тоньше и вытягивается в сторону.

Дальность действия WI-Fi роутера: максимальное расстояние

Посмотрите на картинку выше – с увеличением dB волна конечно же бьет дальше, но вот поймать её становится тяжелее. Такие антенны называют узконаправленные. Другие же антенны с КУ от 3 до 7 dB называют широконаправленные и чаще устанавливаются на дешевые модели. У меня например дома стоит обычный маршрутизатор с двумя такими и бьет не так далеко.

Дальность действия WI-Fi роутера: максимальное расстояние

На дорогих моделях, обычно ставят до 8 и более антенн, которые имеют узкое направление антенны, но больший КУ. За счет этого охват идёт такой же, но радиоволна бьет дальше. Такие аппараты при использовании стандарта «n» могут максимально ловить сигнал уже свыше 150 метров на открытой местности. Советую почитать статью про мощность сигнала тут. Там понятным языком объясняются все тонкости дальности передачи с помощью радиоволн. И после этого вы сами сможете ответить на вопрос – на каком расстоянии радиус действия WiFi будет настолько хорош, чтобы ловить его без помех и потерь.

Увеличить или уменьшить радиус действия WiFi

Для увеличения радиуса действия есть очень много способов. Поэтому поводу писал мой коллега в этой статье. Там понятно объясняется – как в домашних условиях улучшить сигнал и сделать его шире. Но иногда в маленькой квартире связь может быть хуже из-за слишком мощного аппарата. Поэтому мощность надо снижать. Почему это нужно делать – вы узнаете в этой статье.

Другие наши интересноые статьи:

  • Как изменить админ пароль на роутере
  • Как изменить ip адрес роутера билайн
  • Как извлечь прошивку из роутера
  • Как играть с одного роутера в онлайн игры
  • Как играть с другом с одного роутера

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии